If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2+60z=39
We move all terms to the left:
3z^2+60z-(39)=0
a = 3; b = 60; c = -39;
Δ = b2-4ac
Δ = 602-4·3·(-39)
Δ = 4068
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4068}=\sqrt{36*113}=\sqrt{36}*\sqrt{113}=6\sqrt{113}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-6\sqrt{113}}{2*3}=\frac{-60-6\sqrt{113}}{6} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+6\sqrt{113}}{2*3}=\frac{-60+6\sqrt{113}}{6} $
| m+5=2(2m-5) | | 1/49x^2-2x+49=0 | | 2x+13=59 | | 16x^2+12x=20 | | 9(z−1)−2(3z+4)=7 | | x²=-1 | | 20=4/3w | | 4x=6x-7 | | 6-2x=2x-3 | | x÷9=11 | | (4+h)=3h | | 6=-w/6 | | |x-5|=2x+2 | | 34=-2t | | 5b+1/7=2b/3 | | x+5+2x=7-2x+3 | | -18=z/2 | | 4x+9+8x-4=4x+8x+2 | | -(7x+5)=-(9x+3) | | 2(5g+1)=3 | | 10k^2+8k=0 | | (4y-1)^2-4=0 | | 15–4(3–x)=12+15x | | 7(x-2)=2(2x4) | | 8y^2+54y+13=0 | | -1(7x+5)=-9x-3 | | 0=-4(2t-7) | | 4x2=20x-25 | | .15p+p=23 | | 10x+4=-4x-10 | | 4x+8=4x-9+17 | | 17x+9=5x+3 |